

Page 0

UUNNIIVVEERRSSIITTÉÉ AANNTTOONNIINNEE

Faculté d’ingénieurs en Informatique,

Multimédia, Réseaux & Télécommunications

Matière : VB.NET et ASP.NET

Effectué par :

Copyright © 2010-2011, eliematta.com. All rights reserved

NOM Prénom INF#

MATTA Elie

HALLAGE Rabih

Et al.

Privacy

applied

Using the COM port in VB.NET

http://www.eliematta.com/

VB.NET et ASP.NET

Using the COM port in VB.NET

Overview and Hardware abstraction

Copyright © 2010-2011, eliematta.com. All rights reserved | Page 1

Overview

In this part of our project, we will explain in which steps the programming of the

COM port will pass.

Please refer to SerialPortCommunication_VBNet.sln to check how all the

classes work and the opening/closing the com ports.

In computing, a serial port is a serial communication physical interface through

which information transfers in or out one bit at a time (contrast parallel port).

Throughout most of the history of personal computers, data transfer through serial

ports connected the computer to devices such as terminals and various peripherals.

Serial port emulation is useful especially when there is a lack of available physical

serial ports. Communication between software and/or devices which would

otherwise require extra physical connections, can be benefited by using a virtual

COM Port emulator.

A virtual COM port itself is a relatively simple software mechanism that can be

implemented by driver software similar to that of a conventional COM port driver.

A redirector for the Windows operating system is typically configured using a

control-panel style graphical user interface for creating virtual COM ports,

configuring settings for individual COM ports, and configuring global settings

affecting all COM ports. The redirector GUI typically also includes displays of

virtual COM port activity and various diagnostic aids.

And as soon as we finish understanding the whole idea, we can start programming

the signal which is going to be emitted from the COM port by using different

programming languages such as Pic Basic.

After that, we need to write that code on our board that’s why we need a writer on

the IC of the board and a reader and so on…

VB.NET et ASP.NET

Using the COM port in VB.NET

Overview and Hardware abstraction

Copyright © 2010-2011, eliematta.com. All rights reserved | Page 2

Hardware abstraction

Operating systems usually use a symbolic name to refer to the serial ports of a

computer. Unix-like operating systems usually label the serial port devices

/dev/tty* (tty an abbreviation for teletype) where * represents a string identifying

the terminal device; the syntax of that string depends on the operating system and

the device. The Microsoft MS-DOS and Windows environments refer to serial

ports as COM ports: COM1, COM2, etc. On Linux, 8250/16550 UART hardware

serial ports are named /dev/ttyS*, USB adapters appear as /dev/ttyUSB* and

various types of virtual serial ports do not necessarily have names starting with tty.

VB.NET et ASP.NET

Using the COM port in VB.NET

History

Page 3

History:

Back in the days of Visual Basic 6.0, you had to use the MSComm Control that

was shipped with VB6, the only problem with this method was you needed to

make sure you included that control in your installation package, not really that big

of a deal. The control did exactly what was needed for the task.

We were then introduced to .Net 1.1, VB programmers loved the fact that Visual

Basic had finally evolved to an OO language. It was soon discovered that, with all

its OO abilities, the ability to communicate via a serial port wasn't available, so

once again VB developers were forced to rely on the MSComm Control from

previous versions of Visual Basic, still not that big of a deal, but some were upset

that an intrinsic way of serial port communication wasn't offered with the .net

Framework.

Then along comes .Net 2.0, and this time Microsoft added the System.IO.Ports

Namespace, and within that was the SerialPort Class. DotNet developers finally

had an intrinsic way of serial port communication, without having to deal with the

complexities of interoping with an old legacy ActiveX OCX control. One of the

most useful methods in the SerialPort class is the GetPortNames Method. This

allows you to retrieve a list of available ports (COM1, COM2, etc.) available for

the computer the application is running on.

http://msdn2.microsoft.com/en-us/library/aa259393%28vs.60%29.aspx
http://msdn2.microsoft.com/en-us/library/system.io.ports.aspx
http://msdn2.microsoft.com/en-us/library/system.io.ports.serialport.aspx
http://msdn2.microsoft.com/en-us/library/system.io.ports.serialport.getportnames.aspx

VB.NET et ASP.NET

Using the COM port in VB.NET

Settings

Page 4

Settings

Many settings are required for serial connections used for asynchronous start-stop

communication, to select speed, number of data bits per character, parity, and

number of stop bits per character. Hardware from the 1980s and earlier may

require setting switches or jumpers on a circuit board. The speed is either fixed or

automatically negotiated. Often if the settings are entered incorrectly the

connection will not be dropped; however, any data sent will be received on the

other end as nonsense.

Speed

Serial ports use two-level (binary) signaling, so the data rate in bits per second is

equal to the symbol rate in bauds. These rates are based on multiples of the rates

for electromechanical teleprinters. The port speed and device speed must match.

Although some devices may automatically detect popular personal computers,

allowing for much higher baud rates, the capability to set a bit rate does not imply

that a working connection will result. Not all bit rates are possible with all serial

ports. Some special-purpose protocols such as MIDI for musical instrument

control, use serial data rates other than the above series.

The speed includes bits for framing (stop bits, parity, etc.) and so the effective data

rate is lower than the bit transmission rate. For example with 8-N-1 character

framing only 80% of the bits are available for data (for every eight bits of data, two

more framing bits are sent).

Data Bits

The number of data bits in each character can be 5 (for Baudot code), 6 (rarely

used), 7 (for true ASCII), 8 (for any kind of data, as this matches the size of a

byte), or 9 (rarely used). 8 data bits are almost universally used in newer

applications. 5 or 7 bits generally only make sense with older equipment such as

teleprinters.

Most serial communications designs send the data bits within each byte LSB

(Least Significant Bit) first. This standard is also referred to as "little endian". Also

VB.NET et ASP.NET

Using the COM port in VB.NET

Settings

Copyright © 2010-2011, eliematta.com. All rights reserved | Page 5

possible, but rarely used, is "big endian" or MSB (Most Significant Bit) first serial

communications. The order of bits is not usually configurable, but data can be

byte-swapped only before sending.

Parity

Parity is a method of detecting some errors in transmission. Where parity is used

with a serial port, an extra data bit is sent with each data character, arranged so that

the number of 1 bits in each character, including the parity bit, is always odd or

always even. If a byte is received with the wrong number of 1 bits, then it must

have been corrupted. If parity is correct there has been an even number of errors.

Electromechanical teleprinters were arranged to print a special character when

received data contained a parity error, to allow detection of messages damaged by

line noise. A single parity bit does not allow implementation of error correction on

each character, and communication protocols working over serial data links will

have higher-level mechanisms to ensure data validity and request retransmission of

data that has been incorrectly received.

The parity bit in each character can be set to none (N), odd (O), even (E), mark

(M), or space (S). None means that no parity bit is sent at all. Mark parity means

that the parity bit is always set to the mark signal condition (logical 1) and likewise

space parity always sends the parity bit in the space signal condition. Aside from

uncommon applications that use the 9th (parity) bit for some form of addressing or

special signalling, mark or space parity is uncommon, as it adds no error detection

information. Odd parity is more common than even, since it ensures that at least

one state transition occurs in each character, which makes it more reliable. The

most common parity setting, however, is "none", with error detection handled by a

communication protocol.

Stop bits

Stop bits sent at the end of every character allow the receiving signal hardware to

detect the end of a character and to resynchronise with the character stream.

Electronic devices usually use one stop bit. If slow electromechanical teleprinters

are used, one-and-one half or two stop bits are required.

VB.NET et ASP.NET

Using the COM port in VB.NET

Settings

Copyright © 2010-2011, eliematta.com. All rights reserved | Page 6

Conventional notation

The D/P/S conventional notation specifies the framing of a serial connection. The

most common usage on microcomputers is 8/N/1 (8N1). This specifies 8 data bits,

no parity, 1 stop bit. In this notation, the parity bit is not included in the data bits.

7/E/1 (7E1) means that an even parity bit is added to the seven data bits for a total

of eight bits between the start and stop bits. If a receiver of a 7/E/1 stream is

expecting an 8/N/1 stream, half the possible bytes will be interpreted as having the

high bit set.

Flow control

A serial port may use signals in the interface to pause and resume the transmission

of data. For example, a slow printer might need to handshake with the serial port to

indicate that data should be paused while the mechanism advances a line. Common

hardware handshake signals use the RS-232 RTS/CTS, DTR/DSR signal circuits.

Generally, the RTS and CTS are turned off and on from alternate ends to control

data flow, for instance when a buffer is almost full. DTR and DSR are usually on

all the time and are used to signal from each end that the other equipment is

actually present and powered-up.

Another method of flow control may use special characters such as XON/XOFF to

control the flow of data. The XON/XOFF characters are sent by the receiver to the

sender to control when the sender will send data, that is, these characters go in the

opposite direction to the data being sent. The XON character tells the sender that

the receiver is ready for more data. The XOFF character tells the sender to stop

sending characters until the receiver is ready again. These are non-printing

characters and are interpreted as handshake signals by printers and terminals.

If all possible values of a character must be sent as user data, XON/XOFF

handshaking presents difficulties since these codes may appear in user data.

Control characters sent as part of the data stream must be sent as part of an escape

sequence to prevent data from being interpreted as flow control. Since no extra

signal circuits are required, XON/XOFF flow control can be done on a 3 wire

interface.

VB.NET et ASP.NET

Using the COM port in VB.NET

Implementation

Page 7

Implementation

Now that we have that out of the way, let’s move on to programming our

application. As with all application we created, we keep functionality separated

from presentation, we do this by creating Manager Classes that manage the

functionality or a given process. What we will be looking at is the code in my

CommManager class. As with anything you write in .Net you need to add the

references to the Namespace's we'll be using:

Imports System

Imports System.Text

Imports System.Drawing

Imports System.IO.Ports

Imports System.Windows.Forms

In this application we wanted to give the user the option of what format they

wanted to send the message in, either string or binary, so we have an enumeration

for that, and an enumerations for the type of message i.e; Incoming, Outgoing,

Error, etc. The main purpose of this enumeration is for changing the color of the

text displayed to the user according to message type. Here are the enumerations:

#Region "Manager Enums"

''' <summary>

''' enumeration to hold our transmission types

''' </summary>

Public Enum TransmissionType

 Text

 Hex

End Enum

''' <summary>

''' enumeration to hold our message types

''' </summary>

Public Enum MessageType

 Incoming

 Outgoing

 Normal

 Warning

 [Error]

End Enum

#End Region

Next we have our variable list, 6 of them are for populating our class Properties,

the others are being access throughout the manager class so they are made Global.

VB.NET et ASP.NET

Using the COM port in VB.NET

Implementation

Copyright © 2010-2011, eliematta.com. All rights reserved | Page 8

Things are a bit different when sealing with delegates and how objects are access

through VB.Net than they are in C#, so in the VB.Net version there are 2 more

properties, and an extra Boolean variable used to determine if the buffer is to write

the current data to the serial port. Here are the variables needed for the manager

class:

#Region "Manager Variables"

'property variables

Private _baudRate As String = String.Empty

Private _parity As String = String.Empty

Private _stopBits As String = String.Empty

Private _dataBits As String = String.Empty

Private _portName As String = String.Empty

Private _transType As TransmissionType

Private _displayWindow As RichTextBox

Private _msg As String

Private _type As MessageType

'global manager variables

Private MessageColor As Color() = {Color.Blue, Color.Green, Color.Black,

Color.Orange, Color.Red}

Private comPort As New SerialPort()

Private write As Boolean = True

#End Region

NOTE: We will always separate our code into sections using the #region ... #end

region to make it easier when scanning my code. It is a design choice so it's not

necessary if you don't want to do it.

Now we need to create our class properties. All the properties in this class are

public read/write properties. As stated above we needed to add 2 additional

properties for the conversion from C# to VB.Net. We have properties for the

following items which we already explained above:

 Baud Rate: A measure of the speed of serial communication, roughly

equivalent to bits per second.

 Parity: The even or odd quality of the number of 1's or 0's in a binary code,

often used to determine the integrity of data especially after transmission.

 Stop Bits: A bit that signals the end of a transmission unit

 Data Bits: The number of bits used to represent one character of data.

 Port Name: The port with which we're communicating through, i.e; COM1,

COM2, etc.

VB.NET et ASP.NET

Using the COM port in VB.NET

Implementation

Copyright © 2010-2011, eliematta.com. All rights reserved | Page 9

 MessageType: Outgoing, Incoming, Error, Warning, etc.

 Message: This is the actual message being sent through the serial port

We also have 4 properties that aren't related to the port itself, but with where the

data will be displayed, what transmission type to use, the message type, and the

message itself:

''' <summary>

''' Property to hold the message being sent

''' through the serial port

''' </summary>

''' <value></value>

''' <returns></returns>

''' <remarks></remarks>

Public Property Message() As String

 Get

 Return _msg

 End Get

 Set(ByVal value As String)

 _msg = value

 End Set

End Property

''' <summary>

''' Message to hold the transmission type

''' </summary>

''' <value></value>

''' <returns></returns>

''' <remarks></remarks>

Public Property Type() As MessageType

 Get

 Return _type

 End Get

 Set(ByVal value As MessageType)

 _type = value

 End Set

End Property

#End Region

To be able to instantiate any class object we create we need Constructors.

Constructors are the entry point to your class, and is the first code executed when

instantiating a class object. We have 2 constructors for our manager class, one that

sets our properties to a specified value, and one that sets our properties to an empty

value, thus initializing the variables preventing a NullReferenceException from

occurring. We also add an EventHandler in the constructor, the event will be

executed whenever there's data waiting in the buffer:

VB.NET et ASP.NET

Using the COM port in VB.NET

Implementation

 Copyright © 2010-2011, eliematta.com. All rights reserved | Page
10

#Region "Manager Properties"

 ''' <summary>

 ''' Property to hold the BaudRate

 ''' of our manager class

 ''' </summary>

 Public Property BaudRate() As String

 Get

 Return _baudRate

 End Get

 Set(ByVal value As String)

 _baudRate = value

 End Set

 End Property

 ''' <summary>

 ''' property to hold the Parity

 ''' of our manager class

 ''' </summary>

 Public Property Parity() As String

 Get

 Return _parity

 End Get

 Set(ByVal value As String)

 _parity = value

 End Set

 End Property

#Region "Manager Constructors"

 ''' <summary>

 ''' Constructor to set the properties of our Manager Class

 ''' </summary>

 ''' <param name="baud">Desired BaudRate</param>

 ''' <param name="par">Desired Parity</param>

 ''' <param name="sBits">Desired StopBits</param>

 ''' <param name="dBits">Desired DataBits</param>

 ''' <param name="name">Desired PortName</param>

Public Sub New(ByVal baud As String, ByVal par As String, ByVal sBits As

String, ByVal dBits As String, ByVal name As

String, ByVal rtb As RichTextBox)

 _baudRate = baud

 _parity = par

 _stopBits = sBits

 _dataBits = dBits

 _portName = name

 _displayWindow = rtb

 'now add an event handler

 AddHandler comPort.DataReceived, AddressOf comPort_DataReceived

 End Sub

VB.NET et ASP.NET

Using the COM port in VB.NET

Implementation

 Copyright © 2010-2011, eliematta.com. All rights reserved | Page
11

 ''' <summary>

 ''' Comstructor to set the properties of our

 ''' serial port communicator to nothing

 ''' </summary>

 Public Sub New()

 _baudRate = String.Empty

 _parity = String.Empty

 _stopBits = String.Empty

 _dataBits = String.Empty

 _portName = "COM1"

 _displayWindow = Nothing

 'add event handler

 AddHandler comPort.DataReceived, AddressOf comPort_DataReceived

 End Sub

#End Region

The first think we need to know about serial port communication is writing data to

the port. The first thing we do in our WriteData method is to check what

transmission mode the user has selected, since binary data needs to be converted

into binary, then back to string for displaying to the user. Next we need to make

sure the port is open, for this we use the IsOpen Property of the SerialPort Class. If

the port isn’t open we open it by calling the Open Method of the SerialPort Class.

For writing to the port we use the Write Method. It is in this method we utilize the

new boolean variable, write to determine if we want to write the data. This is used

to handling byte transmission type when the data is in the incorrect format:

#Region "WriteData"

 Public Sub WriteData(ByVal msg As String)

 Select Case CurrentTransmissionType

 Case TransmissionType.Text

 'first make sure the port is open

 'if its not open then open it

 If Not (comPort.IsOpen = True) Then

 comPort.Open()

 End If

 'send the message to the port

 comPort.Write(msg)

 'display the message

 _type = MessageType.Outgoing

 _msg = msg + "" + Environment.NewLine + ""

 DisplayData(_type, _msg)

 Exit Select

 Case TransmissionType.Hex

 Try

VB.NET et ASP.NET

Using the COM port in VB.NET

Implementation

 Copyright © 2010-2011, eliematta.com. All rights reserved | Page
12

 'convert the message to byte array

 Dim newMsg As Byte() = HexToByte(msg)

 'Determine if we are goint

 'to write the byte data to the screen

 If Not write Then

 DisplayData(_type, _msg)

 Exit Sub

 End If

 'send the message to the port

 comPort.Write(newMsg, 0, newMsg.Length)

 'convert back to hex and display

 _type = MessageType.Outgoing

 _msg = ByteToHex(newMsg) + "" + Environment.NewLine + ""

 DisplayData(_type, _msg)

 Catch ex As FormatException

 'display error message

 _type = MessageType.Error

 _msg = ex.Message + "" + Environment.NewLine + ""

 DisplayData(_type, _msg)

 Finally

 _displayWindow.SelectAll()

 End Try

 Exit Select

 Case Else

 'first make sure the port is open

 'if its not open then open it

 If Not (comPort.IsOpen = True) Then

 comPort.Open()

 End If

 'send the message to the port

 comPort.Write(msg)

 'display the message

 _type = MessageType.Outgoing

 _msg = msg + "" + Environment.NewLine + ""

 DisplayData(MessageType.Outgoing, msg + "" +

Environment.NewLine + "")

 Exit Select

 End Select

 End Sub

#End Region

You will notice in this method we call three methods:

 HexToByte

 ByteToHex

 DisplayData

VB.NET et ASP.NET

Using the COM port in VB.NET

Implementation

 Copyright © 2010-2011, eliematta.com. All rights reserved | Page
13

These methods are required for this manager. The HexToByte method converts the

data provided to binary format, then the ByteToHex converts it back to hex format

for displaying. The last one, DisplayData is where we marshal a call to the thread

that created the control for displaying the data, since UI controls can only be

accessed by the thread that created them. First we'll look at converting the string

provided to binary format:

#Region "HexToByte"

 ''' <summary>

 ''' method to convert hex string into a byte array

 ''' </summary>

 ''' <param name="msg">string to convert</param>

 ''' <returns>a byte array</returns>

 Private Function HexToByte(ByVal msg As String) As Byte()

 'Here we added an extra check to ensure the data

 'was the proper length for converting to byte

 If msg.Length Mod 2 = 0 Then

 'remove any spaces from the string

 _msg = msg

 _msg = msg.Replace(" ", "")

 'create a byte array the length of the

 'divided by 2 (Hex is 2 characters in length)

 Dim comBuffer As Byte() = New Byte(_msg.Length / 2 - 1) {}

 For i As Integer = 0 To _msg.Length - 1 Step 2

 comBuffer(i / 2) = CByte(Convert.ToByte(_msg.Substring(i, 2),

16))

 Next

 write = True

 'loop through the length of the provided string

 'convert each set of 2 characters to a byte

 'and add to the array

 'return the array

 Return comBuffer

 Else

 'Message wasnt the proper length

 'So we set the display message

 _msg = "Invalid format"

 _type = MessageType.Error

 ' DisplayData(_Type, _msg)

 'Set our boolean value to false

 write = False

 Return Nothing

 End If

 End Function

#End Region

VB.NET et ASP.NET

Using the COM port in VB.NET

Implementation

 Copyright © 2010-2011, eliematta.com. All rights reserved | Page
14

Here we convert the provided string to a byte array, then the WriteData method

sends it out the port. For displaying we need to convert it back into string format,

so we use the ByteToHex method we created:
#Region "ByteToHex"

 ''' <summary>

 ''' method to convert a byte array into a hex string

 ''' </summary>

 ''' <param name="comByte">byte array to convert</param>

 ''' <returns>a hex string</returns>

 Private Function ByteToHex(ByVal comByte As Byte()) As String

 'create a new StringBuilder object

 Dim builder As New StringBuilder(comByte.Length * 3)

 'loop through each byte in the array

 For Each data As Byte In comByte

 builder.Append(Convert.ToString(data, 16).PadLeft(2,

"0"c).PadRight(3, " "c))

 'convert the byte to a string and add to the stringbuilder

 Next

 'return the converted value

 Return builder.ToString().ToUpper()

 End Function

#End Region

The last method that WriteData depends on is the DisplayData method. Here we

use the Invoke Method of our RichTextBox, the control used to display the data, to

create a new EventHandler which creates a new Delegate for setting the properties

we wish for our message, then appending it to the value already displayed.

We had to change the format of the DisplayData method as VB.Net handles

delegates completely different than C#. Instead of putting the functionality of the

delegate in the method, we had to create a seperate method, then use the

AddressOf Method to reference the procedure that will act as our delegate:

#Region "DisplayData"

 ''' <summary>

 ''' Method to display the data to and

 ''' from the port on the screen

 ''' </summary>

 ''' <remarks></remarks>

 <STAThread()> _

 Private Sub DisplayData(ByVal type As MessageType, ByVal msg As String)

 _displayWindow.Invoke(New EventHandler(AddressOf DoDisplay))

 End Sub

#End Region

VB.NET et ASP.NET

Using the COM port in VB.NET

Implementation

 Copyright © 2010-2011, eliematta.com. All rights reserved | Page
15

NOTE: You will notice that we have added the STAThreadAttribute to our

method. This is used when a single thread apartment is required by a control, like

the RichTextBox.

Now we will look at our delegate method, which is responsible for setting all of the

properties of our display window,

which is a RichTextBox, as it has text formatting options not available to the

regular TextBox:

#Region "DoDisplay"

 Private Sub DoDisplay(ByVal sender As Object, ByVal e As EventArgs)

 _displayWindow.SelectedText = String.Empty

 _displayWindow.SelectionFont = New Font(_displayWindow.SelectionFont,

FontStyle.Bold)

 _displayWindow.SelectionColor = MessageColor(CType(_type, Integer))

 _displayWindow.AppendText(_msg)

 _displayWindow.ScrollToCaret()

 End Sub

#End Region

The next method we will look at it used when we need to open the port initially.

Here we set the BaudRate, Parity, StopBits, DataBits and PortName Properties of

the SerialPort Class:

#Region "OpenPort"

 Public Function OpenPort() As Boolean

 Try

 'first check if the port is already open

 'if its open then close it

 If comPort.IsOpen = True Then

 comPort.Close()

 End If

 'set the properties of our SerialPort Object

 comPort.BaudRate = Integer.Parse(_baudRate)

 'BaudRate

 comPort.DataBits = Integer.Parse(_dataBits)

 'DataBits

 comPort.StopBits = DirectCast([Enum].Parse(GetType(StopBits),

_stopBits), StopBits)

 'StopBits

 comPort.Parity = DirectCast([Enum].Parse(GetType(Parity),

_parity), Parity)

 'Parity

 comPort.PortName = _portName

 'PortName

 'now open the port

VB.NET et ASP.NET

Using the COM port in VB.NET

Implementation

 Copyright © 2010-2011, eliematta.com. All rights reserved | Page
16

 comPort.Open()

 'display message

 _type = MessageType.Normal

 _msg = "Port opened at " + DateTime.Now + "" +

Environment.NewLine + ""

 DisplayData(_type, _msg)

 'return true

 Return True

 Catch ex As Exception

 DisplayData(MessageType.[Error], ex.Message)

 Return False

 End Try

 End Function

#End Region

Now that we have opened our port for communication for sending data through,

we need to be able to close the port when we are finished without our application.

Here we simply call the Close Method of the SerialPort Object, which also

disposes of the internal stream being used for the data transmission:
#Region " ClosePort "

 Public Sub ClosePort()

 If comPort.IsOpen Then

 _msg = "Port closed at " + DateTime.Now + "" +

Environment.NewLine + ""

 _type = MessageType.Normal

 DisplayData(_type, _msg)

 comPort.Close()

 End If

 End Sub

#End Region

Next lets take a look at our event handler. This event will be executed whenever

there's data waiting in the buffer. This method looks identical to our WriteData

method, because it has to do the same exact work:

#Region "comPort_DataReceived"

 ''' <summary>

 ''' method that will be called when theres data waiting in the buffer

 ''' </summary>

 ''' <param name="sender"></param>

 ''' <param name="e"></param>

 Private Sub comPort_DataReceived(ByVal sender As Object, ByVal e As

SerialDataReceivedEventArgs)

 'determine the mode the user selected (binary/string)

 Select Case CurrentTransmissionType

 Case TransmissionType.Text

 'user chose string

 'read data waiting in the buffer

VB.NET et ASP.NET

Using the COM port in VB.NET

Implementation

 Copyright © 2010-2011, eliematta.com. All rights reserved | Page
17

 Dim msg As String = comPort.ReadExisting()

 'display the data to the user

 _type = MessageType.Incoming

 _msg = msg

 DisplayData(MessageType.Incoming, msg + "" +

Environment.NewLine + "")

 Exit Select

 Case TransmissionType.Hex

 'user chose binary

 'retrieve number of bytes in the buffer

 Dim bytes As Integer = comPort.BytesToRead

 'create a byte array to hold the awaiting data

 Dim comBuffer As Byte() = New Byte(bytes - 1) {}

 'read the data and store it

 comPort.Read(comBuffer, 0, bytes)

 'display the data to the user

 _type = MessageType.Incoming

 _msg = ByteToHex(comBuffer) + "" + Environment.NewLine + ""

 DisplayData(MessageType.Incoming, ByteToHex(comBuffer) + "" +

Environment.NewLine + "")

 Exit Select

 Case Else

 'read data waiting in the buffer

 Dim str As String = comPort.ReadExisting()

 'display the data to the user

 _type = MessageType.Incoming

 _msg = str + "" + Environment.NewLine + ""

 DisplayData(MessageType.Incoming, str + "" +

Environment.NewLine + "")

 Exit Select

 End Select

 End Sub

#End Region

We have 3 small methods left, and these are actually optional, for the lack of a

better word. These methods are used to populate my ComboBoxe's on my UI with

the port names available on the computer, Parity values and Stop Bit values. The

Parity and Stop Bits are available in enumerations included with the .Net

Framework 2.0:

 Parity Enumeration

 StopBits Enumeration

#Region "SetParityValues"

 Public Sub SetParityValues(ByVal obj As Object)

 For Each str As String In [Enum].GetNames(GetType(Parity))

VB.NET et ASP.NET

Using the COM port in VB.NET

Implementation

 Copyright © 2010-2011, eliematta.com. All rights reserved | Page
18

 DirectCast(obj, ComboBox).Items.Add(str)

 Next

 End Sub

#End Region

#Region "SetStopBitValues"

 Public Sub SetStopBitValues(ByVal obj As Object)

 For Each str As String In [Enum].GetNames(GetType(StopBits))

 DirectCast(obj, ComboBox).Items.Add(str)

 Next

 End Sub

#End Region

#Region "SetPortNameValues"

 Public Sub SetPortNameValues(ByVal obj As Object)

 For Each str As String In SerialPort.GetPortNames()

 DirectCast(obj, ComboBox).Items.Add(str)

 Next

 End Sub

#End Region

That is how you do Serial Port Communication in VB.Net. Microsoft finally gave

us intrinsic tools to perform this task, no more relying on legacy objects. We are

providing this class and a sample application to show how to implement what we

just learned.

Please refer to SerialPortCommunication_VBNet.sln to check how all the

classes work and the opening/closing the com ports.

Thank you.

